
Independent Study final report on Energy Based
Models

Chaitanya Kharyal

(20171208)

Contents

1 Introduction 1
1.1 Why Energy Based Models? (why not multilayer perceptrons?) 1

2 Energy Based Models 2
2.1 Energy and Inference . 2
2.2 Latent Variable . 3

2.2.1 Concept Learning . 3
2.2.2 Free Energy . 4

2.3 Generative Models . 5
2.3.1 Implicit Generative Models 5
2.3.2 Sampling Based Methods . 6

References 12

1 Introduction

1.1 Why Energy Based Models? (why not multilayer percep-
trons?)

Before getting into what energy based models[1] are, let us have a look at why do we
need anything other than a multilayer perceptron for making machines understand
the world. Following are the two broad categories of problems that we face with the
multilayer perceptron:

• Complex Inference Procedure: It can so happen that the inference proce-
dure required for our task is more complex than calculating a stacked layer of
weighted sum (MLP). Since the inference is more complex, we will need some-
thing more complex than a simple DL architecture to get desired results.

• Multiple outputs for the same input: Traditionally, the DL models give
only one output for a single input which might be desirable in some cases while it
might not be in some others. For example, while predicting future video frames
from current and past frames, there can be multiple possible outputs (future
frames) given the same inputs because there is an intrinsic uncertainty associ-
ated to the future. Moreover, if we use a simple MLP with Least Squares loss

1

function, the output future frames would be too blurry to be used meaningfully.
Lets consider the experiment shown in the figure, we are asked to predict the

Figure 1: The initial position (input) of the pen and the possible final outcomes (blurry)
of its position on the table

final position of the pen on a table when is allowed to fall from upright position.
This situation can lead to multiple possible outcomes of pen falling in different
directions. Now, if we train a Least Squares based DL model to predict this
outcome, the best it can do (in order to minimise the MSE) is to output a
very blurry image (as depicted by the right side picture). This can be further
understood by a simpler example of text completion. Let’s say we train a model
to complete the phrase ”I am a . . . boy” and our training data has two type of
completions for this particular phrase, ”good” and ”strong”. Now, let the em-
beddings for them be e(good) and e(strong) respectively. Since the input phrase
is the same, a normal MLP won’t be able to incorporate the multiple outcomes
for the same input and would end up giving something like e(good)+e(strong)

2
as

the output in order to minimise the error for both of the training samples.

2 Energy Based Models

2.1 Energy and Inference

Unlike a DL model which gives an output y for an input x, the Energy based models
try to model the compatibility between a given input-output pair. The main com-
ponent of an EBM, as the name suggests, is energy and, intuitively, it describes the
dependence on the input-output space. Formally, energy function (F) is,

F : X × Y → R (1)

The lesser the energy of a particular input-output pair, the better they fit together.
Now, the inference procedure to output a particular output y once the energy is learnt
becomes pretty straight forward,

ŷ = argmin
y

F (x, y) (2)

If the dimension of Y is small, we can compute all the F (x, y)s and pick the y that
minimises the energy. But if the dimension is large and it is not possible to compute
the energy for all possible ys (say y is continuous), then we need to resort to the gradi-
ent based methods for our inference. For this, we would like to choose a differentiable
energy function.

2

2.2 Latent Variable

If we are saying that we can have multiple outputs for a single input, this means that
something other than the input itself too has control over the output, just that we
don’t know the value of this something else. We call this variable a latent variable z.
The latent variables can provide us with auxiliary information about the task. In the
previous case of determining the final position of the pen, one type of latent variable
can be the direction and magnitude of airflow that might affect the direction of fall.
Knowing such information would make the inference task easier.

Now, we want to minimise our energy function with respect to both the output and
the latent variable. Therefore, the inference process becomes:

ŷ, ẑ = argmin
y,z

F (x, y, z) (3)

Note that if we have any two of the three variables (x, y, z) and the energy function
(F), we can infer the other variable by applying gradient descent on the energy
function (if the variable is differential). Before we go any further into the energy
based models, I want to introduce a paper which uses a similar concept.

2.2.1 Concept Learning

For this section, I will use [2] as my main reference which is also the first paper that
I have read in the concept learning domain. Here, the author has used ”concept” and
”attention” as latent variables. Therefore, for some input state x (Each state contains
a collection of N entities xt = [x0, . . . , xN] and each entry xti can contain information
such as position and colour of the entity), the Energy can be represented as E(x, a,w)
where a and w are attention and concept respectively. Here, attention is nothing but
an attention mask over the entities in the state x which tells us which entities are we
attending to, and w a concept like ”square”, ”circle” etc as shown in the figure.

Figure 2: A visualisation for attention mask a over the state x0(left), and the concept
”square” (right)

Therefore, ideally, E(x, a,w) = 0 when state trajectory x under attention mask a
over entities satisfies the concept w, and it is > 0 otherwise. Therefore, If we know
concept w, we can calculate one of x and a if we know the other using:

3

x(a) = argmin
x

E(x, a,w) a(x) = argmin
a

E(x, a,w)

Both of these can be approximated using gradient descent.

2.2.1.1 Learning Procedure

Figure 3: A visualisation for the learning procedure

First, a pre-generated training state and attention is fed to the energy function and
the resultant w is obtained through optimisation (gradient descent etc.). Now, this
w is used on another state and attention pair and predicted attention and state are
obtained through optimisation again. Now, this attention and state are compared
against the ground truth attention and state to generate the loss, and the error is
back propagated.
There is a major pitfall in the training procedure. Unlike classical ML, here, gradient
descent is a part of the inference procedure. This means that if the network for Energy
is, say, 5 layers deep, and the optimisation module takes 10 steps for optimisation, it
is equivalent to having a 50 layer deep network because every optimisation step will
require a forward pass of the network. Moreover, if this optimization is happening 3
times (as is the case above), it is equivalent to having a 100 layer deep network (2
optimizations are in parallel). Therefore, even for a simple energy function (5 layers
deep), we would require computation worth 100 layer network.

2.2.2 Free Energy

We can redefine our energy function to not depend on the latent variable z by
marginalizing over it:

Fβ(x, y) = − 1

β

∫
z

e−βE(x,y,z) (4)

This new energy function is called free energy and is derived from the Boltzmann
distribution. Another popular way to make the energy function independent of the
latent variable is by minimizing over z.

F∞(x, y) = min
z
E(x, y, z) (5)

This can also be interpreted as β →∞ Boltzmann distribution.

4

2.3 Generative Models

The energy based generative models are divided into two main categories,

2.3.1 Implicit Generative Models

Definition 1 (IGM). [2] [3] IGM is a family of probability distributions Gθ parametrized
by a learnable generator function G : Z → X that maps latent samples z from a fixed
latent distribution η to the data space X . The latent distribution η is required to have
a density over the latent space Z and is often easy to sample from. Thus, Sampling
from G is simply achieved by first sampling z from η then applying G. Formally,

x ∼ G ⇐⇒ x = G(z), z ∼ η

Generative Adversarial Networks (GANs) [4] and Metropolis Hastings GANs [5] can
be examples of Implicit Generative Models. Let us briefly look into the working of
GANs:

2.3.1.1 Generative Adversarial Networks

I will be using [4] as my main reference for this section. Two differentiable functions
(MLPs) Gθg and Dθ (generator and discriminator) depending on parameters θg and
θd respectively are defined. Here, G is a function such that,

G : Z → X

Where Z is the latent space with the associated probability distribution η and X
is the output space (data space) space with the generator probability distribution
pg. We want this pg to be as close as possible to the true data distribution px. D(x)
represents the probability that x came from the distribution px rather than pg,

D : X → [0, 1]

While training, we train D to maximize the probability of assigning the correct label
to both training examples and samples from G. We simultaneously train G to try and
maximise the discriminator error. Since during training both the Discriminator and
Generator are trying to optimize opposite loss functions, they can be thought of two
agents playing a minimax game with value function V (G,D). Formally,

min
G

max
D

V (G,D) = Ex∼px [logD(x)] + Ez∼η[(1− logD(G(z)))] (6)

Therefore, the gradient for stochastic gradient ascent for discriminator becomes:

∇θd

1

m

m∑
i=1

[logD(xi) + log(1− D(G(zi)))] (7)

5

Figure 4: Training process of GAN

And that for the gradient descent for generator becomes:

∇θg

1

m

m∑
i=1

(log(1− D(G(zi))) (8)

As you can see in the figure, we sample from the latent space Z using η (uniform here),
and map it to space X with resulting probability distribution pg (green). Through
training, we try to bring pg and the real data distribution px (black, dotted) closer.
During the independent study, I tried to train a GAN on MNIST dataset [6]. Following
are some results:

Figure 5: Outputs of GAN after 1, 10, 50 and 200 iterations (left to right) respectively

One major problem that I faced during training GANs is their well known issue with
convergence. I tried using TraVeLGAN [7] and CycleGAN [8] for style transfer task
on a custom dastaset made in Unity Game Engine and ADVIO dataset [9], but wasn’t
able to make them converge.

2.3.2 Sampling Based Methods

Suppose we have trained the energy function for our generative model i.e., the energy
function can tell us successfully if some sample is compatible with the given dataset.
Now, we want it to generate some samples compatible to the dataset. We can, then,
think of the probability distribution originating from the energy function as,

pE(x) ∝ e−E(x)

=
e−E(x)

Z

(9)

6

Where, Z is the partition function defined as,

Z =

∫
x

e−E(x) dx (10)

Now, the sampling methods can be used in three ways:

• Approximating Z. As you might have noticed by now that if dimension of x
is large, calculating the integral might be intractable and therefore, sampling
methods are used here.

• Sampling from the distribution pE. If the distribution is complex, we might
want to use sampling methods.

• Sampling from the latent space. From out previous discussion of GAN we know
that there we sampled from the latent space Z using some simple distribution
like uniform distribution. But what if we don’t want that latent distribution to
be that simple? [3]

Let us see that what methods can be used for sampling in the scenarios listed above:

2.3.2.1 Sampling Methods

In this section, I am going to very briefly introduce sampling methods, their limita-
tions and possible solutions.
Rejection Sampling

Figure 6: Rejection sampling

One of the obvious ways to sample from a given probability distribution is by drawing
the points uniformly from under the probability curve. This is because the probability
of a point being in a region is proportional to the height of the curve in that region.
But how to sample a point when sampling from under the curve is not possible
analytically? In such cases we use rejection sampling, i.e., we define a curve which
we know (and can sample from) analytically such that the defined curve (scaled)
is always above the distribution that we want to sample from. Now, we sample the
points from under the defined curve but reject all samples that don’t lie under the
required distribution.

7

Importance Sampling
Let’s say that I wanted to compute the integral,

E[f(x)] =

∫
x

f(x)p(x) dx

But I don’t know how to sample from the distribution p, therefore, I can’t apply the
Monte Carlo approximation as,

E[f(x)] ≈ 1

N

N∑
i=1

f(xi), xi ∼ p

But, let’s say that we have another distribution q that we can sample from, now we
can apply Monte Carlo method as,

E[f(x)] =

∫
x

f(x)p(x) dx

=

∫
x

f(x)
p(x)

q(x)
q(x) dx

=
1

N

N∑
i=1

f(xi)
p(xi)

q(xi)
, xi ∼ q

Limitations [10]
As expected, the rejection sampling algorithm doesn’t work for higher dimensions as
the acceptance rate falls exponentially in dimension. Therefore, we end up rejecting
a lot of proposals before accepting a few of them.
In importance sampling, the issue is a bit more complex as, in it, we are weighting
each sample with p(x)

q(x)
and we want this weight to be higher for more important

regions in p. But, as the dimension increases, the variance of this weight increases
exponentially, and hence, we end up weighting less important regions more which
degrades our approximation.
Markov Chain Monte Carlo
Since the theory behind it is very deep, I am going to just mention one such MCMC
algorithm, i.e. Metropolis Algorithm [11]. Let X be a Markov Chain from which we
have to sample with probability distribution p, let J(x, y) be the transition probability
(from the graph itself) from node x to node y. We want K(x, y) as the new transition
probability which allows us to mix to the stationary distribution p. According to the
algorithm,

K(x, y) =

J(x, y) if x 6= y and A(x, y) ≥ 1
J(x, y)A(x, y) if x 6= y and A(x, y) < 1
J(x, y) +

∑
z:A(x,z)<1 J(x, z)(1− A(x, z)) if x = y

(11)

Where, the acceptance probability (A) is defined as,

A(x, y) =
p(y)J(y, x)

p(x)J(x, y)
(12)

8

2.3.2.2 Generalized Energy Based Models

I will be using [3] as my main reference in this section ([12] also presents a similar idea).
This paper addresses one problem with the vanilla GAN that once the generator is
trained, the discriminator is thrown away (not used for the generation part). The main
claim of this paper is that the discriminator/critic contains important information
about the real data distribution which can be used during sampling.

Figure 7: Comparing results from GAN and GEBM

As it can be seen in the figure, GAN and GEBM both learn the support of the data
well, but the GEBM improves on the distribution of the data by incorporating the
critic.
The paper introduces the Generalized Energy Based Model QBθ,E, where Bθ is the
generator and E ∈ E is the class of energy functions Such that (as we saw in the
implicit models),

X ∼ Qθ ⇐⇒ X = Bθ(z), z ∼ η

The energy function is then used to re-weight the samples based on their importance
weights (similar to free energy),

fQ,E(x) =
e−E(x)

ZQθ,E
(13)

Where,

ZQθ,E =

∫
e−E(x) dQθ

Note that GEBM is also a bit different than the classical EBMs in the sense that in
EBMs, the energy is defined on the data space X instead of the latent/support space
Z in the case of GEBM.
The training of the energy function (and generator) in GEBM is somewhat similar to
the training of discriminator in the GAN and they try to minimize the Generalized
log-likelihood,

LP,Q(E) :=

∫
log fQ,E dP = −

∫
E dP − logZQ,E

9

Where, P is the real data distribution. As you might have noticed, calculating Z in
intractable and they overcome this problem by using a lower bound on the generalized
log-likelihood,

LP,Q(E) ≥
∫

(E + c)dP −
∫
e−E+cdQθ + 1 := F(P,Qθ; E ,R) (14)

Where c ∈ R is a constant that we optimize over along with E.
Now that we have trained our Energy function and the generator, we can define the
sampling method to sample the images from our model. For some test function g, its
expectation with respect to Q is defined as,∫

g(x) dQB,E =

∫
g(B(z))fB,E(B(z))η(z) dz (15)

Therefore, we can define our posterior latent distribution from the importance weights
as,

νB,E(z) = η(z)fB,E(B(z)) (16)

Now, we can sample from the latent space using the distribution ν using the sampling
methods and apply the generator B to get the samples.

Figure 8: Outputs generated by GEBM on CIFAR-10 dataset

Why does it make sense to change the latent distribution?
I am using [12] as my main reference in this subsection. This paper uses the vanilla
GAN and presents it as an Energy Based Model, where the energy is defined using the
output of the discriminator network. From [4], we know that the optimal discriminator
is the one which gives its output as,

D(x) =
pd(x)

pd(x) + pg(x)

Where, pd and pg are the real and generated data probabilities respectively. Now, we
define d(x) as the logit of D(x),

D(x) =
pd(x)

pd(x) + pg(x)
=

1

1 + pg(x)

pd(x)

≈ 1

1 + e−d(x) (17)

=⇒ pd(x) = pg(x)ed(x) (18)

Adding the normalizing constant,

p∗d(x) =
pg(x)ed(x)

Z0

(19)

10

Theorem 1. When the Discriminator is optimal, p∗d = pd.

Proof. We know that for an Ideal discriminator,

D(x) =
pd(x)

pd(x) + pg(x)

We also know that,

D(x) = σ(log pd − log pg)

=⇒ d(x) = log pd − log pg

=⇒ p∗d(x) =
pg(x)elog pd−log pg

Z0

=⇒ p∗d =
pd
Z0

Since Z0 is the normalization constant, it must be 1 since pd is itself a probability
distribution.

=⇒ p∗d = pd

Now, we define the energy function in the latent space as,

E(z) = − log p0(z)− d(G(z)) (20)

And the corresponding Boltzmann distribution becomes,

Pt(z) =
e−E(z)

Z
(21)

Where, p0 is the initial latent distribution (for example uniform in the case of GAN).

Theorem 2. If we sample z ∼ pt, and x = G(z) for some G, then x ∼ p∗d, i.e. the
induced probability measure G ◦ pt = p∗d

Proof. Ideally, we know the distribution pg. To generate samples from p∗d, we can do
rejection sampling with acceptance probability,

p∗d(x)

Mpg(x)
=

ed(x)

MZ0

Where, M is a constant. Now, this can be thought of as doing rejection sampling in
the latent space with the acceptance probability,

r(z) =
p∗d(G(z))

Mpg(G(z))
=
ed(G(z))

MZ0

This induces a new probability distribution in the latent space as,

pt(z) =
p0(z)r(z)

C
=
e−E(z)

C

Where, C is a constant. Therefore, sampling from pd is equivalent to sampling from
pt(z) and then applying G on it.
This tells us that the main purpose of the generator is to learn the support of the
data, and with the discriminator, one can learn how to distribute the data on that
support and in-turn sample from it.

11

References

[1] Yann LeCun, Sumit Chopra, Raia Hadsell, Fu Jie Huang, and et al. A tutorial
on energy-based learning. In PREDICTING STRUCTURED DATA. MIT Press,
2006.

[2] Igor Mordatch. Concept learning with energy-based models, 2018.

[3] Michael Arbel, Liang Zhou, and Arthur Gretton. Generalized energy based mod-
els, 2020.

[4] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
networks, 2014.

[5] Ryan Turner, Jane Hung, Eric Frank, Yunus Saatci, and Jason Yosinski.
Metropolis-hastings generative adversarial networks, 2019.

[6] Feiyang Chen, Nan Chen, Hanyang Mao, and Hanlin Hu. Assessing four neural
networks on handwritten digit recognition dataset (mnist), 2019.

[7] Matthew Amodio and Smita Krishnaswamy. Travelgan: Image-to-image trans-
lation by transformation vector learning, 2019.

[8] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networks, 2020.

[9] Santiago Cortés, Arno Solin, Esa Rahtu, and Juho Kannala. Advio: An authentic
dataset for visual-inertial odometry, 2018.

[10] Art B. Owen. Monte Carlo theory, methods and examples. 2013.

[11] Christian P. Robert. The metropolis-hastings algorithm, 2016.

[12] Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull,
Yuan Cao, and Yoshua Bengio. Your gan is secretly an energy-based model and
you should use discriminator driven latent sampling, 2020.

12

	Introduction
	Why Energy Based Models? (why not multilayer perceptrons?)

	Energy Based Models
	Energy and Inference
	Latent Variable
	Concept Learning
	Free Energy

	Generative Models
	Implicit Generative Models
	Sampling Based Methods

	References

